Edexcel Maths M3 Topic Questions from Papers Strings & Springs | 3. | A particle P of mass m is attached to one end of a light elastic string, of natural length a and modulus of elasticity 3.6 mg . The other end of the string is fixed at a point O on a rough horizontal table. The particle is projected along the surface of the table from O with speed $\sqrt{(2ag)}$. At its furthest point from O , the particle is at the point A , where $OA = \frac{4}{3}a$. | | |----|--|--| | | (a) Find, in terms of m , g and a , the elastic energy stored in the string when P is at A . (3) | | | | (b) Using the work-energy principle, or otherwise, find the coefficient of friction between P and the table. (6) | | | | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | _ | | | | _ | _ | | | | _ | | | | | | | | _ | | | | | | | | | | | | A light elastic string of natural length 0.4 m has one end A attached to The other end of the string is attached to a particle P of mass 2 kg. We equilibrium vertically below A , the length of the string is 0.56 m. | | |--|-----| | (a) Find the modulus of elasticity of the string. | (3) | | A horizontal force is applied to P so that it is held in equilibrium with the an angle θ with the downward vertical. The length of the string is now 0.7 | | | (b) Find the angle θ . | (3) | 1. | Leave | | |-------|--| | blank | | | 4. | 4. A particle P of mass m lies on a smooth plane inclined at an angle 30° to the The particle is attached to one end of a light elastic string, of natural le modulus of elasticity $2mg$. The other end of the string is attached to a fixed the plane. The particle P is in equilibrium at the point A on the plane and the of the string is $\frac{1}{4}a$. The particle P is now projected from A down a line of growth plane with speed V . It comes to instantaneous rest after moving a disconnection of the plane with speed V . | | |----|--|-----| | | By using the principle of conservation of energy, | | | | (a) find V in terms of a and g , | (6) | | | (b) find, in terms of a and g , the speed of P when the string first becomes slack. | (4) | **(5)** Leave blank - 1. A particle *P* of mass 2 kg is attached to one end of a light elastic string, of natural length 1 m and modulus of elasticity 98 N. The other end of the string is attached to a fixed point *A*. When *P* hangs freely below *A* in equilibrium, *P* is at the point *E*, 1.2 m below *A*. The particle is now pulled down to a point *B* which is 0.4 m vertically below *E* and released from rest. - (a) Prove that, while the string is taut, P moves with simple harmonic motion about E with period $\frac{2\pi}{7}$ s. - (b) Find the greatest magnitude of the acceleration of P while the string is taut. (1) - (c) Find the speed of P when the string first becomes slack. (3) - (d) Find, to 3 significant figures, the time taken, from release, for *P* to return to *B* for the first time. (7) | Question 7 continued | Leave
blank | |----------------------|----------------| 1. Figure 1 A light elastic spring, of natural length L and modulus of elasticity λ , has a particle P of mass m attached to one end. The other end of the spring is fixed to a point O on the closed end of a fixed smooth hollow tube of length L. The tube is placed horizontally and P is held inside the tube with $OP = \frac{1}{2}L$, as shown in Figure 1. The particle P is released and passes through the open end of the tube with speed $\sqrt{(2gL)}$. (a) Show that $\lambda = 8mg$. (4) The tube is now fixed vertically and P is held inside the tube with $OP = \frac{1}{2}L$ and P above O. The particle P is released and passes through the open top of the tube with speed u. | (b) | Find <i>u</i> . | | |-----|-----------------|------------| | | | (5) | 5. Figure 2 One end A of a light elastic string, of natural length a and modulus of elasticity 6mg, is fixed at a point on a smooth plane inclined at 30° to the horizontal. A small ball B of mass m is attached to the other end of the string. Initially B is held at rest with the string lying along a line of greatest slope of the plane, with B below A and AB = a. The ball is released and comes to instantaneous rest at a point C on the plane, as shown in Figure 2. Find (a) the length AC, **(5)** (b) the greatest speed attained by B as it moves from its initial position to C. **(7)** | Question 5 continued | | |----------------------|--| 1. | A light elastic string has natural length 8 m and modulus of elasticity 80 N. | | |----|---|---------------| | | The ends of the string are attached to fixed points P and Q which are on the shorizontal level and 12 m apart. A particle is attached to the mid-point of the string hangs in equilibrium at a point 4.5 m below PQ . | same
g and | | | (a) Calculate the weight of the particle. | (6) | | | | (6) | | | (b) Calculate the elastic energy in the string when the particle is in this position. | (3) | 7. A light elastic string has natural length a and modulus of elasticity $\frac{3}{2}mg$. A particle P of mass m is attached to one end of the string. The other end of the string is attached to a fixed point A. The particle is released from rest at A and falls vertically. When P has fallen a distance a + x, where x > 0, the speed of P is v. (a) Show that $v^2 = 2g(a+x) - \frac{3gx^2}{2a}$. (b) Find the greatest speed attained by P as it falls. **(4)** After release, P next comes to instantaneous rest at a point D. (c) Find the magnitude of the acceleration of P at D. **(6)** 24 | nestion 7 continued | | |---------------------|--| 3. Figure 2 A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O on a rough plane which is inclined at an angle θ to the horizontal, where $\sin \theta = \frac{3}{5}$. The coefficient of friction between the particle and the plane is 0.15. The particle is held on the plane at a point which is 1.5 m down the line of greatest slope from O, as shown in Figure 2. The particle is released from rest and first comes to rest again after moving 0.7 m up the plane. | Find the value of λ . | | |-------------------------------|--| Leave | |----------------------|-------| | | blank | | Question 3 continued | I | **(6)** Leave blank 6. Figure 4 A small ball of mass 3m is attached to the ends of two light elastic strings AP and BP, each of natural length l and modulus of elasticity kmg. The ends A and B of the strings are attached to fixed points on the same horizontal level, with AB = 2l. The mid-point of AB is C. The ball hangs in equilibrium at a distance $\frac{3}{4}l$ vertically below C as shown in Figure 4. (a) Show that k = 10 (7) The ball is now pulled vertically downwards until it is at a distance $\frac{12}{5}l$ below C. The ball is released from rest. (b) Find the speed of the ball as it reaches *C*. |
 | | |------|--| | | | |
 | 4. Figure 4 A light inextensible string has its ends attached to two fixed points A and B. The point A is vertically above B and AB = 7a. A particle P of mass m is fixed to the string and moves in a horizontal circle of radius 3a with angular speed ω . The centre of the circle is C where C lies on AB and AC = 4a, as shown in Figure 4. Both parts of the string are taut. (a) Show that the tension in AP is $\frac{5}{7}m(3a\omega^2 + g)$. (b) Find the tension in BP. **(2)** (c) Deduce that $\omega \geqslant \frac{1}{2} \sqrt{\left(\frac{g}{a}\right)}$. (2) | uestion 4 continued | blanl | |---------------------|-------| 6. Figure 5 A particle P is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is held at the point A, where OA = a and OA is horizontal. The point B is vertically above O and the point C is vertically below O, with OB = OC = a, as shown in Figure 5. The particle is projected vertically upwards with speed $3\sqrt{(ag)}$. (a) Show that P will pass through B. **(6)** (b) Find the speed of P as it reaches C. **(2)** As P passes through C it receives an impulse. Immediately after this, the speed of P is $\frac{5}{12}\sqrt{(11ag)}$ and the direction of motion of P is unchanged. (c) Find the angle between the string and the downward vertical when P comes to instantaneous rest. **(4)** |
 |
 | | |------|------|--| Question 6 continued | Leave
blank | |----------------------|----------------| | Question o continueu | 1 | | from rest at A and comes to instantaneous rest 1.1 m below | 711. | |--|------| | Find the modulus of elasticity of the string. | (4) | 4. | A light elastic string AB has natural length 0.8 m and modulus of elasticity 19.6 N. The end A is attached to a fixed point. A particle of mass 0.5 kg is attached to the end B . The particle is moving with constant angular speed ω rad s ⁻¹ in a horizontal circle whose cent is vertically below A . The string is inclined at 60° to the vertical. | blank
he
he | |----|--|-------------------| | | (a) Show that the extension of the string is 0.4 m. | 5) | | | (b) Find the value of ω . | 5) | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | | | Question 4 continued | Leave
blank | |----------------------|----------------| 6. A particle P of mass m is attached to one end of a light inextensible string of length l. The other end of the string is attached to a fixed point O. The particle is hanging in equilibrium at the point A, vertically below O, when it is set in motion with a horizontal speed $\frac{1}{2}\sqrt{(11gl)}$. When the string has turned through an angle θ and the string is still taut, the tension in the string is T. (a) Show that $T = 3mg\left(\cos\theta + \frac{1}{4}\right)$. (8) At the instant when P reaches the point B, the string becomes slack. Find (b) the speed of P at B, **(3)** (c) the maximum height above B reached by P before it starts to fall. **(4)** |
 | | | |------|------|--|
 |
 |
 | | | | | | | | | | |
 | Question 6 continued | Leave
blank | |----------------------|----------------| Lŧ | eave | |----|------| | hl | ank | | A particle <i>B</i> of mass 0.5 kg is attached to one end of a light elastic string of natural length 0.75 m and modulus of elasticity 24.5 N. The other end of the string is attached to a fixed point <i>A</i> . The particle is hanging in equilibrium at the point <i>E</i> , vertically below <i>A</i> . | |---| | (a) Show that $AE = 0.9 \text{ m}$. (3) | | The particle is held at A and released from rest. The particle first comes to instantaneous rest at the point C . | | (b) Find the distance AC. (5) | | (c) Show that while the string is taut, <i>B</i> is moving with simple harmonic motion with centre <i>E</i> . | | (d) Calculate the maximum speed of <i>B</i> . | | (2) | Leave
blank | |----------------------|----------------| | Question 7 continued | Leave | |-------| | blonk | | 7. | A particle P of mass 1.5 kg is attached to the mid-point of a light elastic string of natural length 0.30 m and modulus of elasticity λ newtons. The ends of the string are attached to two fixed points A and B , where AB is horizontal and $AB = 0.48$ m. Initially P is held at rest at the mid-point, M , of the line AB and the tension in the string is 240 N. | | | | | |----|---|--|--|--|--| | | (a) Show that $\lambda = 400$ | | | | | | | The particle is now held at rest at the point C , where C is 0.07 m vertically below M . The particle is released from rest at C . | | | | | | | (b) Find the magnitude of the initial acceleration of <i>P</i> . (6) | | | | | | | (c) Find the speed of P as it passes through M . | Question 7 continued | L | |----------------------|---| Leave | |-------| | hlank | | 4. | A particle P of mass 2 kg is attached to one end of a light elastic string of natural length 1.2 m. The other end of the string is attached to a fixed point O on a rough horizontal | Dia | |----|--|-----| | | plane. The coefficient of friction between P and the plane is $\frac{2}{5}$. The particle is held at | | | | rest at a point B on the plane, where $OB = 1.5$ m. When P is at B , the tension in the string is 20 N. The particle is released from rest. | | | | (a) Find the speed of P when $OP = 1.2$ m. (7) | | | | The particle comes to rest at the point C . | | | | (b) Find the distance <i>BC</i> . (2) | estion 4 continued | | | |--------------------|--|--| |